On Fourier transform of generalized Brownian functionals
نویسندگان
چکیده
منابع مشابه
Equivalence of K-functionals and modulus of smoothness for fourier transform
In Hilbert space L2(Rn), we prove the equivalence between the mod-ulus of smoothness and the K-functionals constructed by the Sobolev space cor-responding to the Fourier transform. For this purpose, Using a spherical meanoperator.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملGeneralized Haar – Fourier Transform
We give a new generalization for Haar functions. The generalization starts from the Walsh-like functions and based on the connection between the original Walsh and Haar systems. We generalize the Haar– Fourier Transform too.
متن کاملA general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کاملequivalence of k-functionals and modulus of smoothness for fourier transform
in hilbert space l2(rn), we prove the equivalence between the mod-ulus of smoothness and the k-functionals constructed by the sobolev space cor-responding to the fourier transform. for this purpose, using a spherical meanoperator.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 1982
ISSN: 0047-259X
DOI: 10.1016/0047-259x(82)90075-6